Gaze-based Interactions in Geovisualisations
One article can have multiple GBIs. Each GBI is identified by a unique identifier. First number is an ID of an article where the GBI was found. Second number is an ID of the GBI within the article. Color represents the tracker type.
Tracker type
Remote (n=36)
Head-mounted (n=14)
Inferred (n=2)
Mouse (n=1)
Integrated (n=1)
Intent-response type | Modality type | |
---|---|---|
Single | Combined |
Evidence Map
Sort by: Direction:
Carto-type | Benefits | Limits | Σ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hands-Free usability | Higher Engagement | Quicker Task Completion | Improved Contextualization | Reduced Cognitive Load | Other | Tracker Accuracy | Undesired Activations | User Fatigue | Learning Curve | Visual Distraction | Incomplete Evaluation | ||
Blink-Only Gesturing | 3 | 3 | 3 | 3 | 1 | 3 | |||||||
Gaze-Only Dwell Activation | 10 | 4 | 2 | 3 | 2 | 8 | 4 | 7 | 3 | 1 | 1 | 9 | 10 |
Gaze-Only Dwell Feature Selection | 4 | 2 | 2 | 3 | 3 | 4 | 3 | 3 | 4 | ||||
Gaze-Only Minimap Navigation | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
Gaze-Pivot Central Zooming | 4 | 5 | 2 | 1 | 1 | 4 | 3 | 5 | 4 | 4 | 1 | 7 | |
Gaze-Pivot Localised Zooming | 1 | 1 | 1 | 1 | 1 | ||||||||
Continuous Gesturing | 4 | 4 | 1 | 4 | 4 | 1 | 1 | 4 | |||||
Gaze-Continuous Enabling | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
Gaze-Directed Continuous Panning | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 3 | 1 | 3 | 3 | ||
Gaze-Contingent Layer Fusion | 4 | 4 | 3 | 5 | 3 | 4 | 4 | 4 | 5 | ||||
Gaze-Contingent Magnification | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
Gaze-Only Bookmarking | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |||||
Gaze-Only Navigation Assistance | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
Off-Map Gaze-Activated Context | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
On-Map Gaze-Activated Context | 7 | 6 | 3 | 7 | 3 | 2 | 7 | 2 | 4 | 1 | 4 | 2 | 7 |
On-Map Gaze-Locked Context | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
Gaze Point Only Sharing | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Color intensity indicates count of GBIs with that property:
1
3
5
7
9
+
1
3
5
7
9
+
Intent Type and Modality of the GBIs:
Intent Types:
Active Discrete Command
Active Continuous Command
Passive Gaze-Contingent Rendering
Passive Gaze-Informed Adaptation
Passive Gaze Sharing
Modality:
Single Modality (Sole Gaze)
Combined Modality
Notes
- [a] Reference identification is based on the year of publication to provide an additional layer of information.
- [b] Last data update in 2024/11.
- [c] Created by ANONYMIZED.
References
- [1] Nikolov, S.G., Bull, D.R., Canagarajah, C.N., Jones, M.G., Gilchrist, I.D. (2002). Multi-modality gaze-contingent displays for image fusion. DOI: 10.1109/ICIF.2002.1020951
- [2] Nikolov, S.G., Bull, D.R., Gilchrist, I.D. (2003). Gaze-Contingent Multi-modality Displays of Multi-layered Geographical Maps. DOI: 10.1007/3-540-36487-0_36
- [3] Eaddy, M., Blasko, G., Babcock, J., Feiner, S. (2004). My own private kiosk: Privacy-preserving public displays. DOI: 10.1109/ISWC.2004.32
- [4] Gepner, D., Simonin, J., Carbonell, N. (2007). Gaze as a Supplementary Modality for Interacting with Ambient Intelligence Environments. DOI: 10.1007/978-3-540-73281-5_93
- [5] Nétek, R. (2011). Possibilities of contactless control of web map applications by sight. DOI: 10.14311/gi.7.5
- [6] Bektaş, K., Çöltekin, A. (2011). An Approach to Modeling Spatial Perception for Geovisualization. DOI: 10.1016/j.sbspro.2011.07.027
- [7] Stellmach, S., Dachselt, R. (2012). Investigating Gaze-supported Multimodal Pan and Zoom. DOI: 10.1145/2168556.2168636
- [8] Giannopoulos, I., Kiefer, P., Raubal, M. (2012). GeoGazemarks: providing gaze history for the orientation on small display maps. DOI: 10.1145/2388676.2388711
- [9] Giannopoulos, I., Kiefer, P., Raubal, M. (2013). The influence of gaze history visualization on map interaction sequences and cognitive maps. DOI: 10.1145/2534931.2534940
- [10] Pfeuffer, K., Zhang, Y., Gellersen, H. (2015). A collaborative gaze aware information display. DOI: 10.1145/2800835.2800922
- [11] Klamka, K., Siegel, A., Vogt, S., Göbel, F., Stellmach, S., Dachselt, R. (2015). Look & pedal: Hands-free navigation in zoomable information spaces through gaze-supported foot input. DOI: 10.1145/2818346.2820751
- [12] Bektas, K., Çöltekin, A., Krüger, J., Duchowski, A. T. (2015). A Testbed Combining Visual Perception Models for Geographic Gaze Contingent Displays. DOI: 10.2312/eurovisshort.20151127
- [13] Çöltekin, A., Hempel, J., Brychtova, A., Giannopoulos, I., Stellmach, S., Dachselt, R. (2016). GAZE AND FEET AS ADDITIONAL INPUT MODALITIES FOR INTERACTING WITH GEOSPATIAL INTERFACES. DOI: 10.5194/isprs-annals-III-2-113-2017
- [14] Tateosian, L.G., Glatz, M., Shukunobe, M., Chopra, P. (2017). GazeGIS: A Gaze-Based Reading and Dynamic Geographic Information System. DOI: 10.1007/978-3-319-47024-5_8
- [15] Göbel, F., Kiefer, P., Giannopoulos, I., Duchowski, A.T., Raubal, M. (2018). Improving map reading with gaze-adaptive legends. DOI: 10.1145/3204493.3204544
- [16] Bektaş, K., Çöltekin, A., Krüger, J., Duchowski, A.T., Fabrikant, S.I. (2019). GeoGCD: improved visual search via gaze-contingent display. DOI: 10.1145/3317959.3321488
- [17] Göbel, F., Kiefer, P. (2019). POITrack: improving map-based planning with implicit POI tracking. DOI: 10.1145/3317959.3321491
- [18] Goebel, F., Kurzhals, K., Schinazi, V.R., Kiefer, P., Raubal, M. (2020). Gaze-adaptive lenses for feature-rich information spaces. DOI: 10.1145/3379155.3391323
- [19] Xie, Y., Wang, H., Luo, C., YANG, Z., ZHAN, Y. (2021). GazeMetro: A Gaze-Based Interactive System for Metro Map. DOI: 10.1145/3441852.3476569
- [20] Pfeuffer, K., Alexander, J., Gellersen, H. (2021). Multi-user Gaze-based Interaction Techniques on Collaborative Touchscreens. DOI: 10.1145/3448018.3458016
- [21] Putra, H.F., Ogata, K. (2022). Navigating through Google Maps Using an Eye-Gaze Interface System. DOI: 10.24507/ijicic.18.02.417
- [22] Liao, H., Zhang, C., Zhao, W., Dong, W. (2022). Toward Gaze-Based Map Interactions: Determining the Dwell Time and Buffer Size for the Gaze-Based Selection of Map Features. DOI: 10.3390/ijgi11020127
- [23] Zhang, H., Hu, Y., Zhu, J., Fu, L., Xu, B., Li, W. (2022). A gaze‐based interaction method for large‐scale and large‐space disaster scenes within mobile virtual reality.. DOI: 10.1111/tgis.12914
- [24] Zhang, C., Liao, H., Huang, Y., Dong, W. (2023). Evaluating the Usability of a Gaze-Adaptive Approach for Identifying and Comparing Raster Values between Multilayers. DOI: 10.3390/ijgi12100412
- [25] Chalimas, T., Mania, K. (2023). Cross-Device Augmented Reality Systems for Fire and Rescue based on Thermal Imaging and Live Tracking. DOI: 10.1109/ISMAR-Adjunct60411.2023.00018
- [26] Zhang, C., Liao, H., Meng, J. (2024). Evaluating the performance of gaze interaction for map target selection. DOI: 10.1080/15230406.2024.2335331